Advanced ODE-Lecture 7 Linear Boundary Value Problem

Dr. Zhiming Wang

Professor of Mathematics East China Normal University, Shanghai, China

Advanced ODE Course November 05, 2014

Outline

- Motivation
- Linear BVP
- Existence and Uniqueness of Linear BVP
- Solution Structure of Linear BVP
- Summary

Motivation

- Linear BVP can be regarded as an extension of the linear IVP although they are quite different from methods, results for existence, uniqueness and solution formulae.
- We concern its existence and uniqueness of solution for linear BVP, and how to solve the linear BVP in general.

Existence and Uniqueness of Linear BVP

The general linear boundary value problem is given by:

$$x' = A(t)x + f(t), \quad Cx(a) + Dx(b) = \eta, \tag{BVP}$$

where A(t), C and D is $n \times n$ matrices and x, f(t) and η are n dimensional vectors, A(t) and f(t) are both in C[a,b]. In particular, if C = I and D = O, the linear BVP is a well-treated IVP.

Theorem 7.1 Let $\Phi(t)$ be a fundamental matrix of x' = A(t)x, then the following statements are equivalent:

- (1) The linear homogeneous BVP (HBVP) x' = A(t)x, Cx(a) + Dx(b) = 0 has only zero solution;
- (2) *n* dimensional matrix $B = C\Phi(a) + D\Phi(b)$ is nonsingular;
- (3) The linear BVP has a unique solution.

Proof: (1) \Leftrightarrow (2): Since $\Phi(t)$ is a fundamental matrix, the general solution of

$$x' = A(t)x$$
 is $x = \Phi(t)c$,

where c is an arbitrary n dimensional constant vector. It is easy to see that

$$[C\Phi(a) + D\Phi(b)]c = 0,$$

which has only solution of $c = 0 \iff$ the coefficient matrix $B = C\Phi(a) + D\Phi(b)$ is nonsingular.

(2) \Leftrightarrow (3): Let $\varphi(t)$ be a solution of

$$x' = A(t)x + f(t).$$

Then, its general solution is $x = \Phi(t)c + \varphi(t)$, where c is an arbitrary n dimensional constant vector. Substituting the general solution into the linear BVP, we have

$$Bc = \eta - C\varphi(a) - D\varphi(b)$$
.

From the above, we obtain immediately that the linear algebraic system has a unique solution \Leftrightarrow its coefficient matrix B is nonsingular. This concludes the result. \square

Green Function and Solution Formula

Remark 7.1 Theorem 7.1 gives the characterization of the existence and uniqueness of solution to the linear BVP. If $B = C\Phi(a) + D\Phi(b)$ is nonsingular, or the linear HBVP x' = A(t)x, Cx(a) + Dx(b) = 0 has unique solution (zero solution), then, the linear BVP has a unique solution.

Remark 7.2 If $\Phi(t)$ is found, $B = C\Phi(a) + D\Phi(b)$ can be computed.

How to solve the linear BVP? What is its solution structure?

First, we need to define a Green matrix function and compute the Green function.

Second, we can solve the linear BVP with obtained Green matrix function based on Theorem 7.1.

Definition 7.1 n dimensional matrix function G(t,s) is called Green matrix function of the linear HBVP if it satisfies the properties:

- (1) For any $s \in (a,b)$, $\frac{\partial G}{\partial t}(t,s) = A(t)G(t,s)$ when $t \in [a,b]$ and $t \neq s$;
- (2) For any $s \in (a,b)$, CG(a,s) + DG(b,s) = 0, $s \in (a,b)$;
- (3) G(t,s) is continuous on $a \le t \le b$, $a \le s \le b$, $t \ne s$, and has a jump discontinuous at t = s such that

$$G(s+0,s)-G(s-0,s)=I$$
, $s \in (a,b)$.

Theorem 7.2 Suppose that A(t) is continuous on [a,b], and the linear HBVP has only zero solution. Then, there exists uniquely a Green matrix function G(t,s), which is defined by (G-1), such that the linear BVP has a unique solution

$$x(t) = \Phi(t)B^{-1}\eta + \int_{a}^{b} G(t,s)f(s)ds$$
, (G-0)

where $\Phi(t)$ is a fundamental matrix of x' = A(t)x and $B = C\Phi(a) + D\Phi(b)$.

Proof: Let

$$G(t,s) = \begin{cases} -\Phi(t)B^{-1}D\Phi(b)\Phi^{-1}(s), & a \le t < s, \\ \Phi(t)B^{-1}C\Phi(a)\Phi^{-1}(s), & s < t \le b. \end{cases}$$
 (G-1)

We verify three conditions by the definition of a Green matrix function. Clearly, the conditions (1) and (3) are satisfied by the definition of G(t,s) in (G-1). Now we verify the condition (2). Since

$$CG(a,s) + DG(b,s) = -C\Phi(a)B^{-1}D\Phi(b)\Phi^{-1}(s) + D\Phi(b)B^{-1}C\Phi(a)\Phi^{-1}(s)$$

$$= -C\Phi(a)B^{-1}D\Phi(b)\Phi^{-1}(s) - D\Phi(b)B^{-1}D\Phi(b)\Phi^{-1}(s)$$

$$+ D\Phi(b)B^{-1}D\Phi(b)\Phi^{-1}(s) + D\Phi(b)B^{-1}C\Phi(a)\Phi^{-1}(s)$$

$$= -[C\Phi(a) + D\Phi(b)]B^{-1}D\Phi(b)\Phi^{-1}(s)$$

$$+ D\Phi(b)B^{-1}[D\Phi(b) + C\Phi(a)]\Phi^{-1}(s)$$

$$= -BB^{-1}D\Phi(b)\Phi^{-1}(s) + BB^{-1}D\Phi(b)\Phi^{-1}(s) = 0,$$

then, the defined G(t,s) is a Green matrix function of the linear HBVP by definition.

As for the uniqueness of G(t,s), we show by contradiction. If there were two Green matrix functions $G_1(t,s)$ and $G_2(t,s)$ such that $G_1(t,s) \neq G_2(t,s)$ for $(t,s) \in [a,b] \times [a,b], t \neq s$;

Let
$$G(t,s) = G_1(t,s) - G_2(t,s) \neq 0$$
 for all $(t,s) \in [a,b] \times [a,b], t \neq s$.

First, for $\forall s \in [a,b]$, G(t,s) is a continuous function on $t \in [a,b]$ and $t \neq s$; when t = s, in view of (3) in the definition of the Green matrix function, we have

$$G(s+0,s) - G(s-0,s) = G_1(s+0,s) - G_2(s+0,s) - G_1(s-0,s) + G_2(s-0,s)$$
$$= I - I = 0.$$

Then, after we define G(s,s) = G(s+0,s) = G(s-0,s), we obtain that for $\forall s \in [a,b]$, G(t,s) is continuous on $t \in [a,b]$.

Second, since A(t) is continuous and

$$\frac{\partial G}{\partial t}(t,s) = A(t)G(t,s), \quad t \neq s,$$

we obtain that for $a \le s < t$ or $b \ge s > t$, G(t,s) is a solution of x' = A(t)x, so as to be the solution of the linear HBVP except for the point at $t \ne s$, which implies $G(t,s) \equiv 0$, $t \ne s$. This is a contradiction by assumption. The uniqueness of the Green matrix function is proved.

Finally, we show that (G-1) is a solution of the linear BVP. We submit (G-1) into (G-0) and have

$$x(t) = \Phi(t)B^{-1}\eta + \int_a^t \Phi(t)B^{-1}C\Phi(a)\Phi^{-1}(s)f(s)ds - \int_t^b \Phi(t)B^{-1}D\Phi(b)\Phi^{-1}(s)f(s)ds.$$

Taking derivative above on both sides, we have

$$x'(t) = A(t)\Phi(t)B^{-1}\eta + A(t)\int_{a}^{t}\Phi(t)B^{-1}C\Phi(a)\Phi^{-1}(s)f(s)ds + \Phi(t)B^{-1}C\Phi(a)\Phi^{-1}(t)f(t)$$
$$-A(t)\int_{t}^{b}\Phi(t)B^{-1}D\Phi(b)\Phi^{-1}(s)f(s)ds + \Phi(t)B^{-1}D\Phi(b)\Phi^{-1}(t)f(t)$$
$$= A(t)x(t) + \Phi(t)B^{-1}B\Phi^{-1}(t)f(t) = A(t)x(t) + f(t);$$

which implies that (G-0) is a solution of x' = A(t)x + f(t). Moreover, we show that (G-0) satisfies $Cx(a) + Dx(b) = \eta$. By the condition (2) of the Green matrix function, we have

$$Cx(a) + Dx(b) = C\Phi(a)B^{-1}\eta + \int_{a}^{b} CG(a,s)f(s)ds + D\Phi(b)B^{-1}\eta + \int_{a}^{b} DG(b,s)f(s)ds$$
$$= \eta + \int_{a}^{b} [CG(a,s) + DG(b,s)]f(s)ds = \eta.$$

Therefore, (G-0) is a unique solution of the linear BVP. This is the end of proof. \Box

Remark 7.3 Theorem 7.2 gives a solution formula based on $\Phi(t)$.

Example 7.1 Find the solution of the following BVP:

$$\begin{cases} x_1' = x_2, & x_1(0) = 0, \\ x_2' = -x_1 + 1, & x_2(\pi) = 0. \end{cases}$$

Solution: We write the BVP into the standard form and then we have

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad f(t) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \eta = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

We may find the fundamental matrix solution of x' = Ax as follows:

$$\Phi(t) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}.$$

Hence,

$$B = C\Phi(0) + D\Phi(\pi) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = B^{-1},$$

which is nonsingular. Therefore, the problem of interests has a unique solution.

We compute G(t,s) with the formula (G-1) as follows:

$$G(t,s) = \begin{cases} -\Phi(t)B^{-1}D\Phi(\pi)\Phi^{-1}(s), & 0 \le t < s, \\ \Phi(t)B^{-1}C\Phi(0)\Phi^{-1}(s), & s < t \le \pi, \end{cases}$$

$$= \begin{cases} -\left(\frac{\sin t \sin s}{\cos t \cos s}, & 0 \le t < s, \\ \cos t \sin s & \cos t \cos s \end{cases}, & 0 \le t < s, \\ \left(\frac{\cos t \cos s}{-\sin t \cos s}, & s < t \le \pi. \right) \end{cases}$$

Therefore, the desired solution is

$$x(t) = \int_0^{\pi} G(t,s)f(s)ds$$

$$= \int_0^t \begin{pmatrix} \cos t \cos s & -\cos t \sin s \\ -\sin t \cos s & \sin t \sin s \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} ds - \int_t^{\pi} \begin{pmatrix} \sin t \sin s & \sin t \cos s \\ \cos t \sin s & \cos t \cos s \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} ds$$

$$= \int_0^t \begin{pmatrix} -\cos t \sin s \\ \sin t \sin s \end{pmatrix} ds - \int_t^{\pi} \begin{pmatrix} \sin t \cos s \\ \cos t \cos s \end{pmatrix} ds$$

$$= \begin{pmatrix} \cos t (\cos t - 1) \\ -\sin t (\cos t - 1) \end{pmatrix} + \begin{pmatrix} \sin^2 t \\ \sin t \cos t \end{pmatrix} = \begin{pmatrix} 1 - \cos t \\ \sin t \end{pmatrix}.$$

Homework

1. Find the solution of the following BVP:

$$\begin{cases} x_1' = x_2 + t, & x_1(0) = 0 \\ x_2' = 1, & x_1(1) = 0 \end{cases}$$

where
$$\Phi(t) = e^{At} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$
 is given. (Answer: $\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} t^2 - t \\ t - 1 \end{pmatrix}$)

